OpenShift 4 Upgrade Paths

For OpenShift 4, the upgrade paths are kept in the cincinnati-graph-data repository as YAML files and then exposed via an API.

There is a Red Hat Solution describing how this data can be queried via and how you can use this data in your automation:

$ curl -sH 'Accept:application/json' '' | jq .

While this data is quite helpful for automation (the Solution also describes helpful queries), it is not very nice to look at the raw data. If you are looking for a graphical presentation of that data, you should check out this wonderful website that is maintained by a Red Hat colleague with hourly generated data:

Missing X-Forwarded-For header in Spring Boot application

So here is another one from the trenches.

More than once one of our OpenShift Container Platform customers approached us and said something along the lines of: “Help, I cannot see the X-Forwarded-For header in my application, our OpenShift Router is probably configured incorrectly!”.

In such cases, it is often a good idea to check what is really being forwarded to the Pods in the cluster. For this, I typically use my simonkrenger/echoenv container to print the headers received by the application. In many cases, it turns out that the application affected is a Spring Boot application and the header is passed correctly to the Pod itself. But the Spring Boot application does not show the header anyway.

We have observed a behaviour of Spring Boot that leads to the X-Forwarded-For header not being passed to the application, as it is consumed by Spring Boot. In the of a Spring Boot application, the following setting controls this:

server.use-forward-headers: true

This configuration leads to the header being consumed by Spring Boot and the header not being available in the application. See also the relevant sections in Spring documentation. Good to know.

Exploring the OpenShift etcd with etcdctl

Kubernetes uses etcd as the persistent store for API data. As etcd is a distributed key-value store, we can also use command line tools to query this store. The examples in this post are for OpenShift 3.x.

Apart from just using get, there is also the possibility to perform the following actions on certain keys:

  • put to write to a key – unless you know what you are doing, don’t touch the Kubernetes data in etcd, as this will manifest in very strange Kubernetes behaviour.
  • del to delete a key – also, this may break your Kubernetes cluster by introducing inconsistencies.
  • watch to keep a watch on an object. This is very helpful to track changes on a certain object.

The get action is probably the most helpful functionality for in-depth API debugging directly within etcd.

Read the rest of this entry »

Investigating slow DNS resolution in container

Some time ago, I had a curious case of very slow DNS resolution in a container on OpenShift. The symptoms were as follows:

  • In the PHP application in the container, DNS resolution was very slow with a 5 second delay before the lookup was resolved
  • In the container itself, DNS resolution for curl was very slow, with a 5 second timeout before the lookup was resolved
  • However, using dig in the container itself, DNS resolution was instant
  • Also, on the worker node, the DNS resolution was instant (using both dig and curl)

TL;DR: Since glibc 2.10, glibc performs IPv4 and IPv6 lookups in parallel. When IPv6 fails, there is a 5 second timeout in many cases before the lookup is returned. Disable IPv6 DNS lookups by setting “single-request” in “resolv.conf” or disable the IPv6 stack completely.

Read the rest of this entry »

OpenShift: Add or remove label

So when using NodeSelectors in OpenShift, you’ll also have to set labels on your nodes. You can find more information on labeling nodes in the OpenShift documentation. Here is how you can add or remove a label from a node or pod:

To add a label to a node or pod:

# oc label node mylabel=myvalue
# oc label pod mypod-34-g0f7k mylabel=myvalue

To remove a label (in the example “mylabel”) from a node or pod:

# oc label node mylabel-
# oc label pod mypod-34-g0f7k mylabel-

You can also use oc label -h to see more options for the oc label command.

“CrashLoopBackOff” and how to fix it

So in any larger container orchestrator installation, be it Kubernetes or OpenShift, you will encounter pods that crash regularly and enter the “CrashLoopBackOff” status.

$ oc get pod --all-namespaces 
NAMESPACE         NAME                       READY     STATUS             RESTARTS   AGE
my-project-1      helloworld-11-9w3ud        1/1       Running            0          7h
my-project-2      myapp-simon-43-7macd       0/1       CrashLoopBackOff   3774       9h

Note the container that has status “CrashLoopBackOff” and 3774 restarts.

Read the rest of this entry »

OpenShift: List all pods in cluster

I recently started working with OpenShift and needed to get a list of all pods on the cluster. I quickly glanced at the documentation but could not find what I wanted. My colleagues quickly pointed me in the right direction:

oc get pod --all-namespaces -o wide

Here is the command with some example output of what to expect:

# oc get pod --all-namespaces -o wide
NAMESPACE                                 NAME                                                       READY     STATUS               RESTARTS   AGE       IP               NODE
my-project                                my-pod-43-d9mo6                                            1/1       Running              0          1d    node3.krenger.local
yet-another-project                       another-pod-43-7g3r0                                       1/1       Running              0          2d    node4.krenger.local

If you just want to know which pods are on a certain node, use oc adm manage-node:

oc adm manage-node node3.krenger.local --list-pods